
Engineering	Principles	 	Name_____________________________	
Electrical	Engineering	
Color	Wheel	4.8.1	Software:	Images		 Date______________________	Team		__________	
	

	
Developed	through	a	partnership	between	the	University	of	Utah	College	of	Engineering	and	Granite	School	

District	

	
Page	1	

Problem	statement	
Develop	a	persistence-of-vision	color	wheel	utilizing	8	RGB	diodes	and	an	Arduino	UNO	R3	board.	

Programming:	Getting	Started	
1. Find	your	Arduino	code	file.		If	it	has	been	modified	by	another	member	of	your	team	since	you	

last	worked	on	it	you	may	need	to	download	it	from	Canvas.	
2. Download	any	image.c	files	that	your	group	has	made	to	the	same	directory	as	your	code	file.		

Make	sure	that	there	are	no	special	characters	(space,~!@#$%^&*)	in	your	image	file	name.	
3. Open	your	program	file	with	Arduino.		You	should	see	tabs	for	your	image	files	as	well.	

Programming:	#include	compiler	directive	
It	is	sometimes	useful	to	include	other	files	in	your	project.		We	will	use	the	#include	statement	to	
incorporate	the	graphics	files	that	your	team	members	have	made.	

#include “myGraphicsFile.c” 
 

This	is	a	complier	directive	starting	with	#	so	we	don’t	use	a	semicolon	at	the	end.		The	filename	must	be	
in	quotes,	and	be	exactly	as	it	shows	on	the	tab	–	case	sensitive.		If	you	don’t	see	any	tabs	for	your	
graphics	files,	make	sure	they	are	in	the	same	directory	as	your	.ino	file	and	that	there	are	no	special	
characters	in	the	file	name.			If	you	change	the	filename	you	will	have	to	quit	Arduino	and	then	open	the	
.ino	file	again.	

4. Add	an	#include	statement	near	the	beginning	of	your	file	for	the	graphics	files	you	downloaded.			

Programming:	Structures	
Structures	(struct)	are	compound	variables	containing	multiple	related	pieces	of	information.		The	
graphics	images	that	your	group	created	using	GIMP	defines	a	structure	which	creates	a	variable	called	
“gimp_image”.		gimp_image	contains	everything	you	need	to	know	to	display	the	image.		Inside	the	
struct	are	the	width	(64),	height	(8)	and	bytes_per_pixel	(3)	along	with	an	array	of	
characters	called	pixel_data	representing	the	individual	pixel	values.	
	

static const struct { 
  unsigned int   width; 
  unsigned int   height; 
  unsigned int   bytes_per_pixel; /* 2:RGB16, 3:RGB, 4:RGBA */  
  unsigned char  pixel_data[64 * 8 * 3 + 1]; 
} gimp_image = { 
  64, 8, 3, 

  
"\377^\304\0\0\0\0\0\0\377^\304\0\0\0\0\0\0\377^\304\0\0\0\0\0\0\377^\
304" 
	



Engineering	Principles	 	Name_____________________________	
Electrical	Engineering	
Color	Wheel	4.8.1	Software:	Images		 Date______________________	Team		__________	
	

	
Developed	through	a	partnership	between	the	University	of	Utah	College	of	Engineering	and	Granite	School	

District	

	
Page	2	

Sidenote:		Most	of	the	pixel	data	is	represented	in	octal	format.		Each	byte	or	character	begins	with	a	
backslash	followed	by	one	to	three	digits	ranging	from	0	to	7.		The	largest	number	is	/377	which	is	the	
binary	number	11	111	111.		In	decimal	this	is	255.		In	hex	it	would	be	written	0xFF.		You	may	also	see	
text	characters	in	the	data	list	–	the	pixel	value	is	the	ASCII	value	of	the	character	(A	=	65,	a	=	97).	
	
To	access	elements	of	a	struct,	use	the	struct	variable	name	followed	by	a	dot	(.)	followed	by	the	
element	name	within	the	struct.	
	

gimp_image.width = 64;  // sets the image width to 64 
pixelValue = gimpImage.pixel_data[35];  // retrieves the 36th pixel 
 

Pixels	are	stored	in	the	array	by	column,	row,	and	then	color	(R1C1	Red,	R1C1	Green,	R1C1	Blue,	R1C2	
Red,	R1C2	Green,	R1C2	Blue,	...).			The	pixel	array	index	can	be	calculated	by	adding	color	(0,	1	or	2)	to	
(row	*	width	+	column	)	*	bytes_per_pixel.		 

	
5. Create	a	function	to	return	the	value	of	a	pixel	from	gimp_image	given	a	row,	column	and	

color.		Use	width	and	bytes_per_pixel	as	stored	in	the	struct	so	the	function	will	work	
even	if	these	parameters	change.		This	function	should	return	an	integer	(int,	not	void).	

	
int getPixel(int row, int column, int color) { 
  int index = (row * gimp_image.width + column ) *  

gimp_image.bytes_per_pixel; 
  return gimp_image.pixel_data[index + color]; 
} 

Programming:	Time	multiplexing	
In	the	persistence-of-vision	project	we	use	time	multiplexing	to	display	each	color	of	each	column	for	a	
set	a	period	of	time	before	moving	on	to	the	next	color/column.		Working	from	the	outside	in,	we	scan	
through	each	column	and	then	color.		For	each	color	we	divide	the	time	by	256	to	allow	for	intensity	
variations	and	then	scan	each	row.		The	following	timing	diagram	shows	how	this	works:	



Engineering	Principles	 	Name_____________________________	
Electrical	Engineering	
Color	Wheel	4.8.1	Software:	Images		 Date______________________	Team		__________	
	

	
Developed	through	a	partnership	between	the	University	of	Utah	College	of	Engineering	and	Granite	School	

District	

	
Page	3	

	
We	can	implement	this	timing	diagram	with	nested	for	loops	
	

6. Create	a	for	loop	that	cycles	through	each	of	the	columns	in	the	picture	
(gimp_image.width).	

7. Inside	the	column	for	loop	create	another	for	loop	which	cycles	through	the	3	colors	(r,	g	and	
b).		Turn	the	appropriate	color	pins	on	inside	this	loop.	

8. Inside	the	color	loop	create	a	loop	which	counts	from	0	to	255.		This	loop	will	adjust	the	
intensity.		If	a	pixel	value	is	greater	than	the	loop	counter	we	turn	it	ON,	otherwise	we	turn	it	
off.		A	pixel	with	a	value	of	127	will	be	on	for	half	of	the	time.	

9. Create	one	final	loop	which	cycles	through	the	eight	rows.		In	this	loop	use	getPixel(row,	
column,	color)	and	an	if()	and	else	command	to	check	if	we	should	turn	the	pixel	on	or	off.	

10. Clear	the	row	and	column	pins	after	the	loops	have	executed	so	that	we	don’t	leave	anything	
on.	

Programming:	Finish	and	Save	
11. In	your	lab	notebook	write	down	what	you	expect	the	code	to	do?	
12. Test	this	code	using	your	group’s	hardware.		
13. In	your	lab	notebook	describe	what	your	code	actually	did.		If	different	from	your	expectations,	

explain.		Share	the	results	with	your	team.	
14. How	long	does	it	take	to	draw	a	complete	picture?	
15. Explain	your	results	to	your	team	and	discuss	with	them	how	you	might	speed	thing	up.	

	
 

16. Save	your	code	and	upload	it	to	your	group’s	file	space	on	Canvas.		Use	a	new	name	so	that	prior	
versions	of	the	code	are	not	over-written.	
	

Red 

Green 

Blue 

Column	1 Column	 Column	3 

Row0 

Row1 

			- 
Row7 

Start 	


